Сотрудники химического факультета МГУ совместно с бельгийскими коллегами разработали экспресс-тест для быстрого и точного определения антибиотиков в сточных водах. Результаты работы опубликованы в журнале ChemPhotoChem.

Ежегодно ВОЗ пополняет список инфекций, которые плохо поддаются лечению из-за снижения эффективности антибиотиков. Причиной появления у бактерий лекарственной резистентности становится неконтролируемое применение антибиотиков — не только в медицинских целях. Антибиотики используют в сельском хозяйстве для ускорения роста животных и растений, профилактики болезней, борьбы с бактериозами. Употребление в пищу продукции, содержащей антибиотики, способствует формированию устойчивости микроорганизмов. Из-за низкого метаболизма некоторые антибиотики остаются в природной среде в течение длительного времени, нарушая экологический баланс.

Для определения фармацевтических препаратов в поверхностных водах используют дорогостоящие лабораторные методы, которые требуют трудоемкой пробоподготовки и высококвалифицированного персонала. Для быстрого поточного анализа в полевых условиях необходимы дешевые и чувствительные сенсоры.

Сотрудники химического факультета МГУ под руководством профессора кафедры медицинской химии и тонкого органического синтеза Ларисы Томиловой и группа профессора Каролина де Веля из Университета Антверпена предложили фотоэлектрохимический метод для определения антибиотиков и протестировали его на гидрохиноне — модельном веществе, схожем по строению с тетрациклиновыми антибиотиками.

Метод основан на том, что в высокоэнергетическом синглетном состоянии кислород очень активен и реагирует со многими органическими веществами, к которыми «безразличен» обычный триплетный кислород, в том числе окисляет содержащийся в пробе гидрохинон. Производное гидрохинона затем восстанавливают на электроде, давая тем самым аналитический сигнал. Ученые синтезировали вещества группы фталоцианинов, селективно поглощающие излучение лазеров с длиной волны 532 или 659 нм. Красители-фотосенсибилизаторы передают кванты лазерного излучения кислороду, который переходит в синглетное состояние. Чем эффективнее фотосенсибилизатор генерирует синглетный кислород, тем точнее определяется содержание гидрохинона.

Ученые показали, что наиболее активно синглетный кислород генерирует трет-бутилзамещенные фталоцианины цинка и алюминия, а также фторзамещенный субфталоцианин бора. Эти соединения и отобраны исследователями для дальнейшего создания фотоэлектрохимического сенсора для определения антибиотиков в сточных водах.

«Пробоподготовка для такого анализа не требуется, достаточно нанести на печатный электрод капельку воды, содержащую гидрохинон или антибиотик, – рассказывает автор работы, научный сотрудник кафедры медицинской химии и тонкого органического синтеза МГУ, к.х.н. Татьяна Дубинина. – Измерение занимает около минуты. В перспективе эксперимент можно будет проводить в полевых условиях».

Ученые планируют создать полноценный сенсор в течение ближайших двух лет. Пока разработанный метод подходит только для анализа тетрациклиновых или окситетрациклиновых антибиотиков, поэтому задача будущих исследований — модификация сенсора для расширения числа определяемых антибиотиков.

Фото. Анализируемый образец в ультрафиолетовых лучах. Александра Кучерова/МГУ