Сотрудники физического и химического факультетов МГУ имени М.В.Ломоносова при помощи моделирования определили, какие процессы лежат в основе перехода электродов литий-воздушных аккумуляторов в неактивное состояние. Результаты работы опубликованы в Journal of Physical Chemistry C.
Литий-воздушные аккумуляторы — устройства, вырабатывающие электроэнергию буквально из воздуха, такие аккумуляторы ещё называют литий-кислородными. Они легкие и за счет большей плотности энергии гораздо более эффективны, чем литий-ионные конкуренты. Литий-воздушные аккумуляторы могут оказаться очень востребованными, например, для увеличения пробега электромобилей без подзарядки. Но, несмотря на все преимущества, промышленное производство литий-воздушных аккумуляторов ещё не запущено: их разработчики сталкиваются с технологическими сложностями, которые пока что не могут решить.
«Литий-воздушный аккумулятор потенциально может обладать в три-пять раз большей удельной энергией, чем современные литий-ионные батареи. Одна из главных проблем разработки таких аккумуляторов — пассивация электрода, то есть переход поверхности материала электрода в неактивное состояние. Мы получили новые данные о механизме реакции и на их основе предложили способы замедлить пассивацию электрода. Предложенную нами методику можно использовать для поиска наиболее подходящих растворителей для электролитов и электродных материалов», — рассказал Артем Сергеев, один из авторов статьи, аспирант кафедры физики полимеров и кристаллов отделения физики твердого тела физического факультета МГУ.
Для нормальной работы литий-воздушных аккумуляторов требуется чистый кислород, а не воздух, представляющий собой смесь атмосферных газов. Углекислый газ и влага, содержащиеся в воздухе, замедляют окислительно-восстановительные реакции, лежащие в основе действия аккумулятора. Чтобы обойти эти препятствия, требуется, по разным оценкам, от 5 до 10 лет. Ученые МГУ исследуют процессы, препятствующие безотказной работе литий-воздушных батарей.
«Вообще, в случае успеха разработки, аккумулятор должен быть литий-воздушным, то есть использовать атмосферный воздух. Нежелательные его компоненты (влага, углекислый газ) должны быть «отфильтрованы» специальными мембранами. Но сейчас существуют и более фундаментальные проблемы, поэтому для их решения, как правило, используют литий-кислородные ячейки, куда подают чистый кислород из баллонов», — прокомментировал Алексей Хохлов, один из авторов статьи, доктор физико-математических наук, академик РАН, заведующий кафедрой физики полимеров и кристаллов физического факультета МГУ.
В литий-воздушном аккумуляторе катод (положительный электрод) — пористая углеродная губка, в пустотах которой находится содержащий ионы лития электролит, — контактирует с внешней газовой средой. Это нужно для того, чтобы воздух поступал к электролиту — жидкому ионному проводнику. Ученые промоделировали границу раздела электрода и раствора электролита в катоде литий-воздушного аккумулятора и предложили способ замедлить пассивацию электрода. Для полноатомного моделирования методами молекулярной динамики исследователи использовали суперкомпьютерный комплекс МГУ.
«При работе литий-воздушного аккумулятора в катоде протекает очень большое количество параллельных процессов и реакций. К сожалению, экспериментальное исследование отдельных стадий этих процессов зачастую не представляется возможным, в то время как моделирование отдельных этапов реакций при помощи суперкомпьютеров позволяет пролить свет на основные закономерности интересующих нас этапов», — объяснил Алексей Хохлов.
Ученые обнаружили, что восстановление надпероксид аниона (сильного неорганического окислителя — О2−), приводящего к пассивации электрода, вероятно только после его связывания с катионом лития.
«Мы поняли, что образование непроводящих продуктов разряда непосредственно на поверхности электрода (его пассивация), происходит только после связывания промежуточного продукта, супероксид-аниона, с ионами лития, которые в большом количестве присутствуют вблизи электрода. Если их оттуда вытеснить, то, может быть, пассивация перестанет протекать так быстро», — обобщил Алексей Хохлов.Работа проходила в сотрудничестве с учеными из Ульмского университета, Германия.
Фото: Электрохимическая ячейка, в которой изучаются механизмы процессов в литий-воздушных аккумуляторах. Источник: Алексей Хохлов